
International Conference on Emerging trends in Engineering, Science and Sustainable Technology (ICETSST-2017)

 ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 52

Request and Server Consolidation Methods for

Cloud Power Management

C.Senthilkumara
, Mr. A. Rajeshb, Mr. P. Natarajanc

a,b,cAssistant Professor, Department of Computer Applications,

Erode Sengunthar Engineering College,

Thudupathi, Perundurai, Erode-638 057, India

Abstract

Cloud computing is used to access

computing resources owned and operated by a

third-party provider. Cloud computing is

Internet-based computing to share resources,

software and information. Both transactional

and long-running analytic computations are

comprised into workloads. Scientific

simulations to multi-tier transactional

applications are referred as workloads. Power

management strategies have been proposed for

enterprise servers based on Dynamic Voltage

And Frequency Scaling (DVFS). DVFS allows

the server to transition the processor from high-

power states to low-power states. The

processors are assigned to sleep states such as

deep sleep to reduce energy consumption. In

deep sleep the server can be configured to use

Direct Memory Access (DMA) to place incoming

packets into memory buffers for processing in

the active state.

 Request batching can be conducted to

group received requests into batches and put

the processor into sleep between the batches.

Virtual Batching is a request batching solution

for virtualized servers with primarily light

workloads. The system dynamically allocates

CPU resources with same performance level

and peak values. Server consolidation is

performed to fully utilize a small number of

active servers in the data center. Static and

dynamic server consolidation algorithms are

used to assign data centers to the request

batches. Static server consolidation algorithm

is used for the offline mode in data centers.

Online workload variations are managed by

the dynamic server consolidation algorithms.

Virtual batching is integrated with pMapper

(power-aware application placement

framework) to assign data centers for the

workloads.

 The Virtual Batching scheme is

enhanced to manage resources with load

balancing mechanism. The system is improved

with optimization mechanism to manage

relative response time. Resource levels and

application requirements are integrated in the

allocation process. The system is adopted to

support Dynamic Random Access

Memory(DRAM) and Dual in-line Memory

Module(DIMM) components.

Keywords: DVFS, Virtual Batching, Request

Batching, Server ConsolidationCPU resource

allocation.

1. Introduction

 Cloud computing is becoming one of

the next IT industry buzz words: users move

out their data and applications to the remote

“Cloud” and then access them in a simple and

pervasive way. This is again a central

processing use case. Similar scenario occurred

around 50 years ago: a time-sharing computing

server served multiple users. Until 20 years

ago when personal computers came to us, data

and programs were mostly located in local

resources. Certainly currently the Cloud

computing paradigm is not a recurrence of the

history. 50 years ago we had to adopt the time-

sharing servers due to limited computing

resources. Nowadays the Cloud computing

comes into fashion due to the need to build

complex IT infrastructures. Users have to

manage various software installations,

configuration and updates. Computing

resources and other hardware are prone to be

outdated very soon. Therefore outsourcing

computing platforms is a smart solution for

users to handle complex IT infrastructures.

 At the current stage, the Cloud

computing is still evolving and there exists no

widely accepted definition. Based on our

experience, we propose an early definition of

Cloud computing is follows. A computing Cloud

is a set of network enabled services, providing

scalable, QoS guaranteed, normally

personalized, inexpensive computing

infrastructures on demand, which could be

accessed in a simple and pervasive way.

International Conference on Emerging trends in Engineering, Science and Sustainable Technology (ICETSST-2017)

 ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 53

Conceptually, users acquire computing

platforms or IT infrastructures from

computing Clouds and then run their

applications inside. Therefore, computing

Clouds render users with services to access

hardware, software and data resources,

thereafter an integrated computing platform

as a service.

 Hardware as a Service was coined

possibly in 2006. As the result of rapid

advances in hardware virtualization, IT

automation and usage metering & pricing,

users could buy IT hardware, or even an entire

data center, as a pay-as-you-go subscription

service. The HaaS is flexible, scalable and

manageable to meet your needs. Examples

could be found at Amazon EC2, IBM’s Blue

Cloud project, Nimbus, Eucalyptus and

Enomalism.

 Software or an application is hosted as

a service and provided to customers across the

Internet. This mode eliminates the need to

install and run the application on the

customer’s local computers. SaaS therefore

alleviates the customer’s burden of software

maintenance, and reduces the expense of

software purchases by on-demand pricing. An

early example of the SaaS is the Application

Service Provider

(ASP). The ASP approach provides

subscriptions to software that is hosted or

delivered over the Internet. Microsoft’s

“Software + Service” shows another example: a

combination of local software and Internet

services interacting with one another. Google’s

Chrome browser gives an interesting SaaS

scenario: a new desktop could be offered,

through which applications can be delivered in

addition to the traditional Web browsing

experience.

 Data in various formats and from

multiple sources could be accessed via services

by users on the network. Users could, for

example, manipulate the remote data just like

operate on a local disk or access the data in a

semantic way in the Internet. Amazon Simple

Storage Service (S3) provides a simple Web

services interface that can be used to store and

retrieve, declared by Amazon, any amount of

data, at any time, from anywhere on the Web.

The DaaS could also be found at some popular

IT services, e.g., Google Docs and Adobe

Buzzword. Elastic Drive is a distributed

remote storage application which allows users

to mount a remote storage resource such as

Amazon S3 as a local storage device.

 Based on the support of the HaaS,

SaaS and DaaS, the Cloud computing in

addition can deliver the Infrastructure as a

Service (IaaS) for users. Users thus can on-

demand subscribe to their favorite computing

infrastructures with requirements of hardware

configuration, software installation and data

access demands. The Google App Engine is an

interesting example of the IaaS. The Google

App Engine enables users to build Web

applications with Google’s APIs and SDKs

across the same scalable systems, which power

the Google applications.

2. Related Work

 Virtualization technology has provided

a promising way to manage application

performance by dynamically reallocating

resources to VMs. Several management

algorithms have been proposed to control

application performance for virtualized

applications [3]. For example, Padala et al. [3]

used MIMO control theory to control

application performance for virtualized

servers. In contrast, our solution provides

energy savings through DVFS and request

batching.

 Energy conservation has been one of

the most important design constraints for

Internet servers. The majority of the prior

work has attempted to reduce power

consumption by reducing the energy

consumption of individual server components.

Several algorithms have been proposed to

utilize DVFS to manage the energy

consumption at the server level, the cluster

level [1] and the data center level [4]. Recently,

several research projects have addressed

power or energy problems in platforms

employing virtualization technology by using

DVFS techniques. However, these algorithms

cannot further reduce energy consumption

when the processor is already at the lowest

DVFS level.

 Elnozahy et al. proposed a request

batching technique for nonvirtualized web

servers by putting the processor into the sleep

mode when the server is idle, significantly

reducing the energy consumption of web

servers when the workload is light. In

contrast, our solution provides additional

energy savings by allowing the processor to

sleep even when the server is not completely

idle. Further, we provide a performance

balancing controller to dynamically adjust the

CPU resource allocation to the VMs such that

request batching can be utilized in virtualized

environments. VM migration is an important

tool for resource and power management in

virtualized computing environments. Several

International Conference on Emerging trends in Engineering, Science and Sustainable Technology (ICETSST-2017)

 ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 54

recent studies propose to dynamically

consolidate VMs to a smaller number of

servers and putting the unused servers into

the sleep mode for energy savings [5]. In

contrast to these algorithms, our solution has

several advantages. First, the request batching

technique used in our solution has a much less

overhead than VM migration, thus can be used

on a much smaller time scale. Second, due to

resource limitations, such as the memory and

bandwidth, sometimes it is infeasible to

further consolidate VMs to a smaller number

of servers even if the utilization of the

processor is still low. In this situation, request

batching can save additional energy by putting

the processor to the sleep mode periodically.

Our algorithm is integrated with VM

consolidation algorithms to save power in

different situations.

 Several papers have explored using

low power states of server components.

AbouGhazaleh and Choi et al. provided studies

based on DVFS. Horvath and Skadron

proposed using dynamic cluster configuration

and multiple ACPI sleep states to reduce

energy consumption in multitier server

clusters. Zhu et al. [8] and Nathuji et al. [1]

proposed to dynamically allocate CPU

resources to the operating system or VM. None

of these studies, however, consider using a

batching technique.

3. Resource Scheduling in Clouds

The need to provide a guaranteed level

of service performance is important for data

centers. This is largely due to a business model

driven by strict service level agreements

(SLAs) based on metrics such as response

time, throughput, and reserve capacity.

However, energy demands and associated costs

are increasing at an alarming rate; it is

projected that data centers in the US alone

will consume 100 billion kWh of energy at a

cost of 7.4 billion dollars per year by 2011. This

poses a dilemma for data center operators;

they must satisfy new and existing service

contracts while minimizing energy

consumption to reduce cost and strain on

power generation facilities.

 Data centers generally provision based

on a worst-case scenario, which leads to a low-

average server utilization in modern data

centers. For example, a recent estimation

suggests that the utilizations of web servers

are often in the 5 to 12 percent range. These

underutilized servers spend a large portion of

their time in an idle state [7]. Several recent

studies have shown that a server uses

approximately 60 percent of its required peak

power when it is idle. This over provisioning

leads to large amounts of energy waste.

Therefore, reducing energy waste, while

guaranteeing SLA agreements, can lead to

significantly reduced operating costs.

 A well-known approach to addressing

this problem is to transition the processor from

high-power states to low power states using

Dynamic Voltage and Frequency Scaling

(DVFS) whenever the performance allows.

This approach effectively reduces the power

consumption of the computer systems when

the server has a medium intensity workload

(we define workload intensity in Section 2).

However, the capability of this approach to

reduce power consumption is limited when the

server has a low-intensity workload due to two

reasons. First, when the utilization of the

processor is very low, the leakage power, which

cannot be significantly reduced by DVFS,

contributes a major portion of the power

consumption. Second, many high performance

processors only allow a small range of DVFS

levels and even the lowest level provides a

higher speed than is required for some light

workloads. For example, in a case study on our

testbed, the power consumption of an idle

server with an Intel Xeon 5360 processor can

only be reduced from 163 to 158 W when the

processor is transitioned from the highest

DVFS level to the lowest one.

 To further reduce energy consumption,

processors need to be put into sleep states such

as Deep Sleep. In Deep Sleep, the processor is

paused and consumes significantly less power.

For example, the power consumption of a

server with an Intel Xeon 5500 Processor may

be reduced to 23 percent of its peak value

when the processor is switched to the Deep

Sleep state [6]. When the processor is in Deep

Sleep, the server can be configured to use

Direct Memory Access (DMA) to place

incoming packets into memory buffers for

processing when the processor is returned to

the active state, thus, avoiding harming the

functionality of the hosted server applications.

Therefore, to save more power for servers with

light workloads, we can perform request

batching to put the processor into the Deep

Sleep state when there are few incoming

requests. During the sleep time, we delay and

batch the requests when they arrive and wake

the processor up when the earliest request in

the batch has been kept pending for a certain

batching time-out.

 However, it is challenging to perform

request batching directly on a virtualized

International Conference on Emerging trends in Engineering, Science and Sustainable Technology (ICETSST-2017)

 ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 55

server. Virtualization technologies such as

Xen, VMware, and Microsoft Hyper-V allow

provisioning multiple virtual machines (VMs)

onto a single physical server. However, all the

VMs on a single physical server are correlated

due to sharing the same physical hardware,

i.e., any state changes in the hardware affect

all the VMs. Since different VMs may have

different workloads and performance

requirements, putting the processor into Deep

Sleep based on the performance of one VM

may affect the application performance of

other VMs.

 In this paper, we propose Virtual

Batching, a novel request batching solution for

virtualized enterprise servers with primarily

light workloads. Our solution dynamically

allocates the CPU resource such that all the

VMs can have approximately the same

performance level relative to their allowed

peak values. Based on the uniform level, our

solution then determines the time length for

periodically batching incoming requests and

putting the processor into sleep. When the

workload intensity changes from light to

medium, request batching is automatically

switched to DVFS to increase processor

frequency for performance guarantees.

 Virtual Batching is also extended to

integrate with server consolidation to achieve

maximized energy conservation with

performance guarantees for virtualized data

centers. Server consolidation can improve

server utilization by consolidating VMs onto a

smaller number of servers on a long time scale.

However, due to conservative resource

profiling and various real-world constraints,

servers after consolidation can still be

underutilized. Virtual Batching can then be

adopted to put the processors of active servers

into sleep on a shorter time scale for further

energy savings due to its much smaller

overhead. Specifically, this paper has the

following contributions:

 We propose a novel request batching

technique in virtualized environments

to achieve significant energy

conservation when the server workload

is light.

 We integrate request batching and

DVFS to provide energy conservation

for virtualized servers when the

workload varies at runtime. Our

solution allows energy to be saved

across a wide range of workload

intensities.

 We design a two-layer control

architecture that relies on feedback

control theory as a theoretical

foundation to achieve analytical

assurance of control accuracy and

system stability.

 We propose to integrate request

batching with server consolidation to

achieve maximized energy

conservation with performance

guarantees for virtualized data

centers.

 We conduct experiments on a

hardware testbed with real trace files

and present empirical results to

demonstrate the effectiveness of our

control solution to conserve energy for

virtualized enterprise servers.

4. Problem Statement

 Request batching can be conducted to

group received requests into batches and put

the processor into sleep between the batches.

Virtual Batching is a request batching solution

for virtualized servers with primarily light

workloads. The system dynamically allocates

CPU resources with same performance level

and peak values. Server consolidation is

performed to fully utilize a small number of

active servers in the data center. Static and

dynamic server consolidation algorithms are

used to assign data centers to the request

batches. Static server consolidation algorithm

is used for the offline mode in data centers.

Online workload variations are managed by

the dynamic server consolidation algorithms.

Virtual batching is integrated with pMapper

(power-aware application placement

framework) to assign data centers for the

workloads. The following drawbacks are

identified in the existing system.

 Complex virtual server sleep process

 Average relative response time is not

optimized

 Energy management is tuned for the

processor

 Data center load is not managed

International Conference on Emerging trends in Engineering, Science and Sustainable Technology (ICETSST-2017)

 ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 56

5. Architecture of Virtual Batching

Scheme

Fig. 5.1. System architecture of Virtual

Batching.

 In this section, we provide a high-level

description of the Virtual Batching system

architecture. The goal of Virtual Batching is to

control the response times of all the VMs on a

physical server to their administrator-defined

set points while minimizing the energy

consumption of the server. To achieve this

goal, we adopt three techniques: Request

batching, DVFS, and CPU resource allocation.

Fig. 5.1 provides an overview of the system

architecture. In this paper, we assume that

every VM runs a web application and the

applications in different VMs are independent

of each other. We also assume that the web

requests to different VMs are independent of

each other. These assumptions are usually

valid because the VMs can belong to different

customers.

5.1 Performance Balancing

 Implementing a technique such as

request batching or DVFS directly in a

virtualized environment is challenging because

both methods rely on modifying the

performance of the physical system (via CPU

hardware states) to manage energy

consumption. Because hardware state

transitions affect the performance of all VMs

hosted on a physical server, the VMs are

correlated. Without effective resource

management, the methods of controlling the

response times of enterprise servers inside the

VMs are limited; using the average response

time has a chance of allowing the busier

servers to violate their response time goals

while using the longest response time among

the servers may waste CPU resource and

energy. To overcome this limitation, our design

uses a performance balancing controller to

balance the relative response times of all the

VMs by dynamically allocating the CPU

resource. The relative response time is defined

as Rtmeasured,i/Rtsetpoint,i, where Rtmeasured,i is the

measured response time of the web application

in the ith VM and Rtsetpoint;i is the

corresponding set point defined by the system

administrator for the ith VM. This method

allows the web application in each VM to have

a different set point, which gives flexibility in

how VMs are provisioned on physical servers.

 The performance balancing controller

periodically uses the response time monitor to

measure the average response time of the web

applications in each VM hosted on the server.

It then adjusts the fraction of CPU time

allocated to each VM and gives more CPU time

to VMs with relative response times above the

average. Once the CPU allocations have been

determined, they are enforced by a CPU

Resource Allocator.

 To design the performance balancing

controller, we need to address the following

challenges: First, the number of VMs running

on the server may change at runtime, so the

performance balancing controller should be

able to adapt to any of these changes. Second,

when the workload is light, it is possible that a

VM may become completely idle for a certain

interval of time, such that the response time

monitor cannot give a reading of the response

time. To address the two challenges, we design

our performance balancing controller as a

collection of VM-level controllers. Every VM-

level controller reads the relative response

time of the VM from the VM-level response

time monitor, collects the average relative

response time of all nonidle VMs running on

Response

Time Monitor

DVF

S –

Base

d

Contr

oller

Requ

est

Batc

hing

Cont

rolle

r

Perfor

mance

Balan

cing

Contr

oller

CPU

Resour

ce

Allocat

or
Proce

ssor

HT

TP

HT

TP

HT

TP

V

M

1

V

M

2

V

M

n

International Conference on Emerging trends in Engineering, Science and Sustainable Technology (ICETSST-2017)

 ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 57

the server, and controls the VM-level relative

response time to the server-level average

relative response time.

5.2. Integration of Request Batching and

DVFS

 With a well-designed performance

balancing controller, the relative response

times of the individual VMs can be controlled

to be close to each other. Thus, the average

relative response time of the VMs indicates the

server-level performance. We adopt two server-

level power management techniques, request

batching and DVFS, to minimize the energy

consumption while guaranteeing the average

relative response times of the VMs hosted on

the server. Both techniques provide a

compromise between the average relative

response time and energy consumption. A

request batching-based controller periodically

controls the average relative response time by

tuning the duty cycle, i.e., the fraction of time

that the processor is in the active state. The

system then enforces the duty cycle by

switching the processor between the sleep and

active states. A longer duty cycle results in a

shorter response time but higher energy

consumption. Similarly, the DVFS-based

controller manages the response time by

tuning the DVFS level. A higher DVFS level

means a shorter response time and higher

energy consumption.

 The two techniques are targeted for

different workload intensity ranges of the

server. The request batching-based controller

can be more power efficient when the workload

intensity is relatively low and the DVFS-based

controller works better when the workload

intensity is moderate. Virtual Batching uses

both controllers, dynamically switching

between them. In this paper, the DVFS-based

controller is designed based on the control

algorithm presented in our previous work. The

focus of this paper is on the request batching

controller and the integration of request

batching with DVFS to handle different

workload intensities.

5.3. Request Batching Policy

 To minimize the server energy

consumption under the response time

constraint, we design a request batching policy

that includes two steps. In the first step, when

the server is completely idle, the processor is

put into Deep Sleep until new web requests

arrive. This step requires that the server

should be able to automatically wake up on

demand when a web request comes. These

mechanisms are often available in computer

systems. For example, network adapters are

capable of waking up the processor from sleep

modes using the support of Wake-on-LAN

feature. The ACPI interface allows waking up

the processor at a given point of time in the

future. After the processor is waken up, the

system enters the second step.

 In the second step, when the server is

not completely idle, it is possible that the

response time is unnecessarily shorter than

the desired value at the cost of more energy

consumption. In this case, it is desirable that

the processor be put into Deep Sleep in short

periods to allow reduced energy usage. To

achieve response time guarantees, the power

state of the processor is switched between

Deep Sleep and the active mode on a time

scale much shorter than the response time

requirement of a web request based on a value

called duty cycle, i.e., the fraction of time when

the processor is put into Deep Sleep. When the

processor is sleeping, incoming requests are

batched by the network adapter. When there

are no pending requests to process, the system

is switched to the first step and put into Deep

Sleep again. We design a request batching

controller to dynamically tune the duty cycle to

control the response time of the VMs to a

certain set point. Note that though different

VMs sharing the server may have different

workloads, they share the same duty cycle.

When the processor is in the active mode, the

performance balancing controller gives more

CPU resource to the VMs with heavy

workloads such that all VMs will have their

desired performance.

Fig.5.2. Transition Between Request

Batching And DVFS Control.

Deep

Sleep

DVFS-

Based

Control

ler

Request

Batching

Controller

Response

Time > Set

point AND

Duty Cycle =

100%

Response

Time < Set

point AND

CPU

Running at

the Lowest

DVFS Level

A

Req

uest

arriv

es

Completel

y Idle

International Conference on Emerging trends in Engineering, Science and Sustainable Technology (ICETSST-2017)

 ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 58

 The duty cycle is enforced by switching

the processor between the sleep and active

states on a small time scale. Based on a recent

study [2], the transition time of putting a

processor into the Deep Sleep mode is about 30

μs for many processors, such as the Intel

Pentium M processor. It is important to note

that different processors may have different

Deep Sleep modes and Virtual Batching does

not assume any specific processors. For

processors that do not directly support Deep

Sleep, such as Intel Xeon 5400 series, power

gating can be used instead, which can

effectively reduce the processor power from 80

to 16Win nanoseconds [2]. This small overhead

makes it feasible to apply request batching in

real server systems. In addition, it has been

demonstrated that some other components in a

server, such as DRAM DIMM, can also be

transitioned into the sleep mode in less than 1

μs in future server design. As a result, the

Virtual Batching technique can be extended to

put those components into sleep as well, which

is our future work. For processors that can

achieve very low power consumption at the

lowest DVFS level, the Virtual Batching

technique can be applied to other components

in the server, such as DRAM, for energy

savings.

 The transition between DVFS control,

request batching control, and Deep Sleep is

summarized in Fig. 5.2. The details of the

design and analysis of the performance

balancing controller are available in the

supplementary file, which can be found on the

Computer Society Digital Library at

http://doi.ieeecomputersociety.org/10.1109/TPD

S.2012.237, of this paper.

6.Virtual Batching with Memory

Management

 Cloud resources are provided for the

users to perform computational tasks.

Resources are provided by the providers with

different servers. The servers are continuously

running to provide resources. Energy

consumption level for the servers is increased.

Dynamic Voltage Frequency Scaling (DVFS)

mechanism is used to adjust the voltage supply

for the processors. Power supply is managed

under two states. They are sleep state and

active state. The power supply is reduced in

the sleep state. The resource requests are

consolidated with request levels. In the same

way the server resource levels are also

consolidated with availability details. The

request and server consolidation mechanism is

used in the Virtual batching technique. The

Virtual batching technique is used to manage

energy levels in cloud resource sharing

environment. The Virtual batching mechanism

is enhanced to manage memory resources. The

system is designed with the following

objectives.

 To manage cloud resources with energy

consumption levels

 To apply Virtual Batching technique for

energy constrained resource managed

process

 To group relevant requests and server

resources

 To enhance Virtual Batching with load

balancing mechanism

 To incorporate workload variations in

dynamic server consolidation process

 To provide power management on memory

devices

 To increase the average relative response

rate

 The Virtual Batching scheme is

enhanced to manage resources with load

balancing mechanism. The system is improved

with optimization mechanism to manage

relative response time. Resource levels and

application requirements are integrated in the

allocation process. The system is adopted to

support Dynamic Random Access Memory

(DRAM) and Dual in-line Memory Module

(DIMM) components.

 The Virtual Batching scheme is

improved to manage power for computational

and storage units. Request consolidation is

improved with optimization techniques.

Request load is distributed with different

servers. The system is divided into five major

modules. They are resource management,

consolidation process, resource allocation

process, load balancing process and power

management on memory units.

 Resource management module is

designed to maintain the resource availability

under the providers. Request and server

consolidation tasks are carried out under the

consolidation module. Resource allocation

module handles the scheduling process.

Request loads are distributed under load

balancing module. Memory devices are

managed with power usage levels and memory

management module.

7. Conclusion

 Cloud resources are managed with

energy consumption levels. Virtual Batching

scheme is used to allocate resources with

request and server consolidation. The system

International Conference on Emerging trends in Engineering, Science and Sustainable Technology (ICETSST-2017)

 ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 59

is improved with optimization schemes to

increase response rate. The system is

enhanced to support energy management

under memory devices. High server utilization

is achieved in the system. Energy consumption

is minimized by the resource scheduling

scheme. The system achieves efficient

application performance. The system

maximizes the throughput in resource sharing

process.

REFERENCES

[1] R. Nathuji, P. England, P. Sharma, and A. Singh,

“Feedback Driven QoS-Aware Power Budgeting for

Virtualized Servers,” Proc. Fourth Int’l Workshop

Feedback Control Implementation and Design in

Computing Systems and Networks (FeBID), 2009.

[2] D. Meisner, B.T. Gold, and T.F. Wenisch,

“PowerNap: Eliminating Server Idle Power,” Proc.

14th Int’l Conf. Architectural Support for

Programming Languages and Operating Systems

(ASPLOS), 2009.

[3] P. Padala, K.-Y. Hou, K.G. Shin, X. Zhu, M. Uysal,

Z. Wang, S. Singhal, and A. Merchant, “Automated

Control of Multiple Virtualized Resources,” Proc.

Fourth ACM European Conf. Computer Systems

(EuroSys), 2009.

[4] X. Wang, M. Chen, C. Lefurgy, and T.W. Keller,

“SHIP: Scalable Hierarchical Power Control for

Large-Scale Data Centers,” Proc. Int’l Conf. Parallel

Architectures and Compilation Techniques (PACT),

2009.

[5] A. Verma, G. Dasgupta, T.K. Nayak, P. De, and R.

Kothari, “Server Workload Analysis for Power

Minimization Using Consolidation,” Proc. Conf.

USENIX Ann. Technical Conf., 2009.

[6] Intel. Intel 5500 Series Datasheet vol. 1, 2009.

[7] Yefu Wang and Xiaorui Wang, “Virtual Batching:

Request Batching for Server Energy Conservation in

Virtualized Data Centers”, IEEE Transactions On

Parallel And Distributed Systems, Vol. 24, No. 8,

August 2013.

[8] X. Zhu, D. Young, B.J. Watson, J. Rolia, S. Singhal,

B. Mckee, C. Hyser, D. Gmach, R. Gardner, T.

Christian, and L. Cherkasova, “1000 Islands: An

Integrated Approach to Resource Management for

Virtualized Data Centers,” Cluster Computing, vol.

12, pp. 45- 47, 2009.

